Using Closed n-set Patterns for Spatio-Temporal Classification

نویسندگان

  • Saulius Samulevicius
  • Yoann Pitarch
  • Torben Bach Pedersen
چکیده

Today, huge volumes of sensor data are collected from many different sources. One of the most crucial data mining tasks considering this data is the ability to predict and classify data to anticipate trends or failures and take adequate steps. While the initial data might be of limited interest itself, the use of additional information, e.g., latent attributes, spatio-temporal details, etc., can add significant values and interestingness. In this paper we present a classification approach, called Closed n-set Spatio-Temporal Classification (CnSC), which is based on the use of latent attributes, pattern mining, and classification model construction. As the amount of generated patterns is huge, we employ a scalable NoSQL-based graph database for efficient storage and retrieval. By considering hierarchies in the latent attributes, we define pattern and context similarity scores. The classification model for a specific context is constructed by aggregating the most similar patterns. Presented approach CnSC is evaluated with a real dataset and shows competitive results compared with other prediction strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First record of Nais elinguis Müller, 1773 (Annelida: Oligochaeta: Naididae), Spatio-temporal patterns of its population density and biomass production along two estuaries in the South Caspian Sea, Mazandaran Province, Iran

The cosmopolitan oligochaete worm, Nais elinguis, is common to fresh and brackish water habitats. This species was found while investigating the limnology of two rivers alongside the Iranian coasts and has not been reported in the Iranian freshwater fauna and Caspian Sea before. N. elinguis was collected bimonthly from Cheshmehkileh and Sardabrood estuaries using a Van Veen grab (0.03 m2) and S...

متن کامل

Spatio-temporal patterns of crab fisheries in the main bays of Guangdong Province, China

  Using a semi-balloon otter trawl, crab fisheries in the main bays of Guangdong Province, China, were carried out seasonally . A total of 70 species were found, all belonging to the South China Sea Faunal sub region in the tropical India-West-Pacific Faunal Region. The clustering and nMDS ordination analysis revealed the existence of three groups. Group 1 included Hailing Bay and four bays to ...

متن کامل

An Artificial Neural Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification

An artificial neural network is developed to recognize spatio-temporal bipolar patterns associatively. The function of a formal neuron is generalized by replacing multiplication with convolution, weights with transfer functions, and thresholding with nonlinear transform following adaptation. The Hebbian learning rule and the delta learning rule are generalized accordingly, resulting in the lear...

متن کامل

Spatio-temporal patterns of crab fisheries in the main bays of Guangdong Province, China

  Using a semi-balloon otter trawl, crab fisheries in the main bays of Guangdong Province, China, were carried out seasonally . A total of 70 species were found, all belonging to the South China Sea Faunal sub region in the tropical India-West-Pacific Faunal Region. The clustering and nMDS ordination analysis revealed the existence of three groups. Group 1 included Hailing Bay and four bays to ...

متن کامل

Spatio-Temporal Analysis of Drought Vulnerability using the Standardized Precipitation Index (Case study: Semnan Province, Iran)

This study was conducted to identify drought event and its emerging regions in Markazi desert, Iran with focus onSemnan province in a 30 years statistical period. In this research, 61 stations having adequate data selected and usedafter extracting annual statistic from monthly and daily data. Standardized precipitation index values for each stationwere calculated and classified. The Results hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014